Liste magi


Ofte når man jobber med DNA så jobber man med ulike former for lister. Enten fordi man samarbeider med slektninger og utveksler lister, eller fordi man administrerer DNA for flere og av den årsak har flere lister. Man kan bruke listene til å finne ut mer enn bare ved å se på sin egen lille liste isolert.

Nedenfor viser jeg deg Hvordan bruke excel til å jobbe for deg med å sortere ut forskjeller, eller likheter mellom 2 lister. (Jeg bruker Office 365 PC versjon). Fremgangsmåten er forenklet og veldig generell fordi ulike selskaper har ulik former på sine lister. (MyHeritage lister må bearbeides litt før de kan brukes*  Listen jeg bruker her, er ekstrem enkel.  (Denne bruksanvisning i pdf, med bilder + demofiler)

* MyHeritgage matchlister inneholder «ID for deg» – «ID for treffperson», Din ID må fjernes om du skal sammenligne lister fra ulike personer. Første linje ID hos MH kan se slike ut: D-52B0754F-8EFF-36AA-9B05-B56ACC6F359E-D-1E0A3A3A-85BC-45F6-A26F-D0A019615CDF, har markert ut hva som må bort.

Forutsetninger:

  • Excel
  • 2 filer av samme oppbygging
    • Excel filer eller filer med tabellarisk struktur (komma, semikomma, tab separert, eller fast feltlengde). Filene må ha kolonner og rader
ID;NAVN;cM
AE123;Dag Holte;1876
WD541;Runa Grøndahl;3560

Fremgangsmåte:

  1. Åpne excel
  2. Gå til data fanen. Velg rett å åpne rett filtype (dette eksempelet har csv filer)
  3. Velger «DNA_MOR.CSV», trykker «importer»
  4. Trykker «Last inn»
  5. Endrer navnet på arket til «Mor»
  6. Gjentar punkt 2-5 for «DNA_BARN.CSV»

Like i begge lister (morsslekt)

  1. Hent data, Kombiner spørringer, Slå sammen
  2. Velg
    1. Data kilder DNA_BARN, DNA_MOR
    2. Kolonne som skal være lik i begge (Klikk på tittelfelt for å aktivere)
    3. Sammenføy type:
      1. indre == like i begge
    4. Trykk ok. (Kan du ikke trykke ok, har du trolig glemt pkt 2. kolonne som skal være lik)
  3. Lukk og last inn (Du får nå nytt ark med det som er likt i begge lister)
  4. Gi arket nytt fornuftig navn (I dette eksempelet er ett naturlig valg å kalle det morsslekt)
  5. Endre navn på spørring ifra Merge1 til Morsslekt (høyreklikk på navn i spørringer i høyre marg, velg endre navn)

Farsslekt

Dersom man ikke har en far hvor er dennes slektninger?
Svar: De vil hovedsaklig være de som moren ikke har, men barnet har

Vi tenger å vite hvem er i listen til barnet, men ikke er felles med mora.

Gjør som over, men velg

  • kilde: DNA_BARN (først), Morslekt 
  • sammenføy type,  «Anti – bare rader i første»
  • lukk og last inn
  • Navngi arket og spørringen «Farslekt»

AUTOMAGI

Du har nå koblet ditt regneark til 2 eksterne datakilder.  Lagd 2 lister hvor du har delt inn slekta etter mor og far. Får du nye lister kall de det samme og overskriv de gamle listene. Sidene dataene ligger utenfor og er oppdatert, alt du trenger å gjøre i ditt regnerak er å gå til arkfane «Data» og trykk på ikon for Oppdater alt. (Mener bestemt at tastekombinasjonen Alt+F9 er hurtigtasten, for oppdatert alt)

Alle dine lister vil ha oppdatert seg i regnearket, helt automagisk.

En mulig utvidelse er å lage en masterliste for hver av dine dna personer. Om du døper om den nye lista til «person»_ny kan du ha en lignende spørring som ser om det er noen nye i listen og legge disse til i master listen. Hvordan du gjør dette er likt det du har gjort her, men du må velge Full ytre, og senere finne funksjonen fjern duplikater (menypunkt under Data)

Hva er oddsen?


Bakgrunn

What are the Odds? eller WATO som noen forkorter dette til, er ett verktøy på «DNA Painter» sittt nettsted som er verdt å undersøke. Spesielt om du ikke vet hvordan man skal plassere noen inn slekta og du vil leke med mulighetene.

Eksempelet som brukes er 80% oppdiktet. Det eneste som er reellt at Bjarne Betjent er født ca 1945, oppgitte cM verdier (andel delt DNA) og at han har en ukjent far. Dette er gjort for å skjule identiteten til nålevende, og det er uenighet om hvordan "Bjarne" passer inn i slekta.

Bjarne Betjent har fått nokså 2 nære treff på 564,2 og 444 cM med noen som han antar er på hans fars side, Bodil og Johan. Andre disse også DNA treff med er Inger, Lisa, Julie, Tove samt Vivian. Alle treffene var på Gedmatch. Men ingen av disse 2 treffene er synlig i slekt med hverandre.

Hvordan kommer man videre? Jo man må finne ut hvordan folkene er innbyrdes i slekt med hverandre å tegne slektstrær. Hvordan kan man det, jeg vet bare at de er i slekt med meg?

På Gedmatch kan man se sine treff, og man kan se sine treffers treff. (egentlig alle sine treff). Nøkkelen er å bruke GedmatchID, Gedmacth er en åpen dna database som lar (alle sine registrete brukere) se den informasjonen du har lagt inn i databasen, unntatt hvilken DNA kode du har*)

*) Matcher du noen på kromosonene fra plass 50420 til 51620 og du vet hva du har av dnakode i dette område, vet du hva den andre også har mellom disse punktene, og bare der. Du vet ett lite fragment av ett lite fragment av hva denne personen har. En autosomal test avslører 0,02% av ditt DNA om du deler hele "koden" du fikk kartlagt, (ca 700.000 av 3 milliarder bokstaver) så om du eksponerer 1200 av dine 3 milliarder bokstaver så ville jeg ikke bekymret meg over dette.

En nøkkel til å DNAforske slekt på er å bruke «shared cM project» på DNA Painter. Taster man delt DNA i cM verdi får man opp hvilke relasjoner som er mulige, med sannsynligheter. (Med MyHeritage får du dette direkte i 1-1 trefflisten). Ved å se på trefflisten til de ulike matchene på Gedmatch fant man følgende relasjoner:

NavnTrecMSlektskap
BodilA0564,2Mor til Tove og Vivian
ToveA1256,7Datter av Bodil
VivianA2224,3Datter av Bodil
JohanB0444 Onkel til Inger og Lise
IngerB1239,7Niese av Johan.
LisaB2 269,6Niese av Johan. Mor til Julie
JulieB21195,4Datter av Lisa

Ved å kontakte noen i slekta til Bodil og Johan fikk man vite at ovenstående stemte, og at familiene hang sammen på følgende måte:

* angir hviken søsken som er forelder for neste generasjon

Utfylling av WATO

For å kunne bruke «What are the odds» må man starte med en kjent ane. I eksemplet ovenfor er dette ikke tilfelle. Dette er 2 slekter med en felles forbindelse. Dette betyr at man kan tegne 2 (4) forskjellige tavler. Hver boks i WATO kan være ett par, eller en person. Tegner derfor opp 2 tavler; Etterkommere av Truls, deretter Ingrid. (Å tegne opp nedenstående er ganske enkelt, forklarer ikke hvordan jeg kom dit. Utfordringen med å bruke verktøyet kommer i neste steg). Bare de du har en cM verdi på skal oppgis med dette. Det er disse’s delt DNA som brukes videre i teoriene.

Teorier – hvordan passer Bjarne Betjent inn?

WATO virker ikke med mindre man har flere teorier. Man kan ikke bare putte inn det man tror er rett og få ett svar. Hele poenget med dette verktøyet er å analysere hvilke teorier kan være rett. Når man har store andel delt DNA typisk foreldre/barn, søskenbarn, halvsøsken trenger man egentlig ikke dette verktøyet. Det holder med å bruke «shared cM prosject» i slike tilfeller. Prøver nevø/niese for å vise hva man velger (ikke fordi det er en god teori).

Hypotese kommer ut med score 0 (bilde under), som betyr usannsynlig. Døper om barn av Edna til hel/halv (fordi jeg skal vise hvordan legge til halvsøsken), samt se hvordan det slår ut.

Skal være halvsøsken til alle de andre søskene. Velger derfor alle

Tester alle avkom i hver generasjon av «halvsøskenet». Hypotese 3 får høyest tall, som betyr det er mest sannsynlig.

Rapporten under grafen som tegner opp er viktig å sjekke, den oppsummerer alle funnen på alle teoriene. Foreløpig sier den dette:

Hypotese 3 er 1178x mer sannsynlig. OBS! Dette betyr ikke at den som er mest sannsynlig, er den faktiske forbindelsen. Kan noe være mulig så kan det være mulig. LIvet er fult av tilfeldigheter! Vi har fortsatt mange andre alternativer som ikke er utforsket. Legger til alle mulige varianter jeg kan komme på for denne delen av slekta. Så få vi se hva som dukker opp:

De med «no» emoji, passer ikke pga alder

Lagde de alternativer jeg kom på, men flere av disse passer ikke inn om alder på far i forhold til fødsel av Bjarne Betjent. Satte emoji på de alternativer som ikke går opp, og fjerner før neste bilde.

WATO diagram familiegren 1: 4 ulike alternativer er like sannsynlige! Må derfor se på den andre famliegrenen

Familiegren 2

Viser bare oppsumeringen og ikke hvordan jeg kom dit i detalj. Tar hensyn til at Bjarne sin far kan ikke være født senere enn ca 1930, siden Bjarne er født ca 1945.

WATO – del 2

WATO diagram for famlien over

Konklusjon

Om man tar ett steg tilbake og ser på opplysningene pånytt. Hva er det som utmerker seg med dette tilfelle? I jakten på en ukjent forelder, så har man 2 familiegrupper som ikke er i slekt med hverandre, men er forbundet via en tredje person. Det logiske er at det er personen som er nøkkelen. Reiulf, eller en av hans sønner må være faren til Bjarne Betjent. Alternativt en helbror av han og eller sønn av denne, eller helsøsters sønn. Men han har neppe en helsøsken fordi han er ett resultat av ett flyktig forhold, så det må være han. Slektskap til begge «klyngene» er ikke mulig på andre måter. Folk som leter etter ukjent far er som regel ikke så heldig å ha denne familietvisten. Slekt som er mulig pga 2 halv familier, som ikke er i slekt med hverandre men bare «deg» via din ukjent ane.

Kombinasjonene av begge WATO diagrammene understøtter denne teorien. Dette er mest plausible forklaringen om man ser på alle fakta samlet. Mener du noe annet ta gjerne kontakt!

Bli konge på familehaugen du og!


Familieklynger hjelper deg til å forstå hvor andre hører hjemme i din slekt. Genetic Affairs har gitt MyHeritage tilgang til deres verktøy for å lage familieklynger. Her er noen tips for at du skal kunne mestre dette verktøyet du og.

Liten advarsel, selv om man deler dna med noen er dette ikke et endelig bevis på slektskap, men en meget sterk indikasjon. Slektsforskning må til. Mengden delt dna spiller inn, små mendger kan tilfeldigvis kommet fra ulike grener og dermed mistolkes, slik at man finner likt dna ved tilfeldigheter og ikke fordi man har felles opphav – IBC – Identified by Chance. Siden grenseverdiene er satt nokså høyt er det normalt å se relle slektninger i klyngerapporten.

Intro

Har du DNA hos MyHeritage og premium abonnement eller bedre kan du be om å få tilsendt en «Auto cluster» rapport. (Cluster = Klynge). Dette er en sammenligning av dine matcher som deler mellom 30 og 350 cM *) med hverandre. På «Genetic Affairs» kan kunder hos 23andMe, Ancestry og FamilyTreeDNA abonnere på sine matcher, og selv bestemme hvor ofte man skal få denne rapporten, samt utifra hvilke grenseverdier. Hos MyHeritage kan du bestille rapporten manuelt 1 gang pr døgn.

*) Usikker på om disse verdiene justeres automatisk basert på dine data, men antar dette.

Alle matcher sammenlignes mot hverandre. Forenklet betyr dette om Person A,B,C og D matcher deg så sjekkes A mot ABCD, så B mot alle osv. Deler 2 personer segmenter merkes krysningspunktet mellom de med en farge. Flere med samme farge betyr de tilhører en klynge av folk som innbyrdes deler DNA. Alle innad i en slik gruppe trenger ikke å ha arvet samme hele segment, men innbyrdes så deler de DNA på ett eller flere segment.

Samme farge = Samme familieklynge / familiegruppe

Hvordan tolke rapporten grafisk

(1) Hvem er Derek i slekt med?


  • Går man først horisontalt bortover og kikker opp ser man at han er i slekt med seg selv. Krysningspunktet er merket med (rød)farget boks.
  • Neste person er Stephanie. Hun ser ikke ut til å være en match. Her kan vi bli lurt. De kan dele mindre enn 30 cM seg i mellom. Isolert sett kan man derfor ikke si de er i slekt med hverandre utifra denne rapporten. (Det er sterke indisier for at de er i slekt, fordi de begge er si slekt med andre som er i samme røde grupppe A).
  • Fortsetter vi bortover er; Samantha, Gerald, Jan og Desiree også i samme familiegruppe.
  • Kikker vi lengst bort finner vi en grå boks. Derek ser ut til å være i slekt med Maritha, men slektskapet er grått. Forklarer dette bedre i detalj rett nedenfor.

(2) Grå utenforliggere (Spøkelsene)

  • Alle i en gruppe 1, er grå. Dette betyr at de slekt med flere grupper, De får derfor ikke en entydig farge utenfor sin egen nærmeste gruppe. De er «spøkelser» som viser at det er en forbindelse mellom de ulike klyngene/familiene. (spøkelser er «mitt» ord, i mangel av noe bedre å kalle det)
  • Ser vi på Bernt Ole er han i slekt med 3 stk grå (Jan, Frida, Paulette). Disse tilhører egentlig rød gruppe A, men han er også i familie med folk i grønn gruppe D (Seg selv, Kerry, Maritha).
  • Alle 7 i gruppe 1 ser ut til å være i klynge D, men også i slekt med noen i klynge A. Om du tenker etter er kanskje noen av dine søskenbarn i slekt med deg via din morsslekt, andre søsken barn er i slekt med deg via din farsside. Dette betyr ikke at disse grå er i slekt med deg både via far og mor, men att dine «cousins» kan være på forskjellige grener. men det kan være på samme side av en familie også fordi søskenbarn arver ulike biter av sine felles besteforeldre/oldeforeldre. Noen kan også være i slekt med deg lengre bak i anetreet og derfor være litt i slekt med begge grener.

(3) Grå spøkelser er hint

  • Bernt Ole og Kerry i slekt med Jan som igjen er slekt med alle i rød gruppe. (Se på jan horrisontalt). Vi så på Bernt Ole i forrige runde, Kerry er lik Bernt bortsett fra at Bernt macther Dale og det gjør ikke Kerry. Derimot matcher Kerry, Maritha og det gjør ikke Bernt Ole.
  • Videre undersøkelser på segmenter må gjøres. De grå forbinder 2 grupper hovedsaklig fordi de man må se på at de er slekt med en som er i gruppen. De hinter sterkt om slektskap mellom disse klyngene. Jo flere grå utenforliggere mellom 2 jo sterkere indisie. Totalt er der 7 grå i gruppe 1. Men det kan bli for mange også slik at man ikke ser åpenbare sammenhenger. Noe som er vanlig med steder hvor alle er i slekt med alle, eller folkegrupper gifter seg bare innen sin religion/kaste.

(4) Alle matcher hverandre


  • Alle i klynge C er innbyrdes i slekt med hverandre. Jeg ser dette fordi alle matcher hverandre – og vises som en perfekt forkant. Av dette kan man også anta at det er trolig er nært slektskap de i mellom. (Alle triangulerer på minst ett delt segment – se lengst ned på siden at dette stemmer)
  • Fra «Theorem om slektskap», vet jeg at alle disse har samme stamfar/mor. Suzette er mor til Kyle, Debbie og Alison. Dag Albert er min mors tremenning. (Suzette har jeg forøvrig korrespondert med endel uten å vite at det er tatt DNA test av hennes barn. Jeg har slektsforsket endel på hennes kobling til meg. Jeg avviste nemlig først hennes forfar som en del av min slekt basert på feilaktig oppført fødested hos henne og «alle» andre på MH (Stangeby, Hedmark), men personen viste seg å være en «Stangeby» fra Hof i Vestfold.
  • At alle ikke får en farget kloss betyr ikke at de ikke har samme ane men de har arvet ulike segemeter av DNA. De vil da ikke kunne sammenlignes. 99% av alle tremenninger deler dna, går man en generasjon bakover vil 90% av firmenninger kunne bevise slektskap gjennom dna. femmenninger deler i 50% ikke dna med hverandre. Dette er fordi man arver ikke de samme bitene av sine forfedre.

(5) Alle er i slekt med seg selv

  • Alle sjekkes mot alle også seg selv, det er derfor at bilde sentrerer rundt en akse.

(6) Symmentri

  • Som nevnt i (5) sjekkes alle mot alle, man får derfor en akse. Denne gir en symmentri. Spiller derfor ingen rolle om man ser på en personene i venstre marg, eller starter med personene i liste øverst.
  • 4 stk i Gruppe 1 ser ut til å være tett i slekt med hverandre. Går man til høyre vil man se igjen dette innefor gruppe D (a)
  • 3×4 personer går igjen i bolker (a,b,c) som du ser nederst til høyre i bildet – (Klynge D). Antar at alle inne for hver av disse minigruppene er tett i slekt med hverandre.
  • Person d kobler minigruppe a med minigruppe b. Her må jeg undersøke videre hvordan de er innbyrdes i slekt med hverandre. Men det er klare indikasjoner på sammenhenger. Antar at Dale er lengre ned i treet enn Bernt eller omvendt (her må jeg sjekket nærmere hvilken retning dette viser)

(7) Alle må ikke dele samme segment for å utgjøre en klynge

  • Klynge C danner en pen firkant og alle matcher hverandre. Her tenker jeg at alle sammen deler samme segment. (Ved sjekk på kromosonleser ser jeg at alle triagulerer på det ene av 3 segmenter)
  • Klynge A er større og løsere sammensatt. Her er ikke alle tilsynelatende i slekt med alle andre, men alle er i slekt med noen som er i slekt med dem. Her vil det være folk på ulike grener hvor noen har arvet segmenter som andre grener har mistet disse.. Fragmenter av DNA som er felles binder disse sammen

Klyngerapporten

Noen mener at den viktigste delen av rapporten er oppsummeringen nederst. Første del er veldig visuell og kan gi deg en forsåelse av sammenhenger. Det hångripelige er oppsummert i listen nederst. Hver klynge finner du igjen i listen. Man ser navnet på Person som matcher (som også finnes på den visuelle). cM er totalt delt dna oppgitt i centiMorgan, den lengste blokken oppgis under «longest cM», så får du vite antall delte dna-biter (segmenter), hvilken klynge, for til slutt å få oppgitt hvor mange personer som finnes i slektstreet

Klynge C

1) Navn på treff

Ved å klikke på navnet til treffet får du vedkommende opp i 1-1 DNA sammenligning. Herfra kan du gjøre mye (dette skriver jeg mye om nå)

2) Notat

Teksten under navnet i feltet «Notes» finnes bare om man på forhånd har skrevet noe i notatfeltet på DNA treffet. Det flere veier til dette notatfeltet, det mest synlige er under «Undersøk DNA», som jeg har markert med 2 i bildet rett over. Er notat feltet utfyllt er boksen farget sterkt lilla. Hvordan du fyller ut dette feltet er opp til deg selv.. Foreløpig gjør jeg det på en bestemt måte (se nedenfor):

  • Første linje: bokstavkode for stien til kjent ane. (M-Mor, F-Far). En bostav for hvert ledd. Så navnet på denne personen,
  • Andre linje: Navn på foreldre som gav gav dna’et til denne personen, samt hvilken relasjon jeg har til tester 4C = femmenning.

3) Slektstre

Finnes testpersonen i ett slektstre så angis dette i siste kolonne i «treff-listen». I eksempleet over vet jeg at jeg har en mor, og barn. Hadde jeg ikke vist dette, eller om jeg lurete på hvilke slektskap det kan være mellom noen i treet får man først ett lite hint ved å se på antall medlemmer i treet. På første bilde ser jeg at det står 812 på 3 stk (De befinner seg i samme treet) Ved å klikke på tallet kommer man inn i slektsstreet og kan se om dette stemmer eller ikke. ett annet tips er å sjekke ut 1-1 på den med mest delt DNA/eller lengste segment. Nedenfor ser jeg at Suzette er mor til 3 barn som alle triangulrer med meg. Bare Allison og Kyle er i klynge 3 (C)

4a) Delte segment

Delte segemnt kan visualiseres via kromosonleseren- Man velger en eller flere personer i klyngen og ser om disse triangulerer på en eller flere segmenter. Jo flere man ser på jo mindre blir biten som er felles for alle. Eksempel nedenfor viser at alle matcher hverandre på ett segment, derfor har alle match mot hverandre i den gule klyngen C.

Listen sier at jeg deler 3 segmenter med noen, og 11 med Dag Albert. (tar ikke med alle hans segmeter). Som vist ovenfor har Suzette 3 barn. Alec er ikke med i klyngelisten. Dette er fordi det er en nedre grense for delt DNA på 30 cM og en øvre på 300 (derfor er heller ikke min foreldre eller søsken med i klyngelisten). Alec deler 27,9 med meg.

4b) Segmenter for klynge A

Klynga A
  • Alle i denne klyngen deler ett segment, selv om det ikke vises visuelt (lengst opp). Derek matchet ikke ifølge klyngerapporten Stephanie. Jeg er litt usikker på hvorfor dette skjer delt dna med meg er nesten identisk 32,4 & 32,3.
  • Maritha deler ikke segmenter på kromoson 15 med de andre, men kan se ut til å ha arvet en annen bit i forlengelsen av de andre. Dette tyder på at hun sitter på en annen gren av samme familie. Hun er ikke med i A klynga. Hun deler 20,1 cM med de andre og er av den grunn ikke med.

Oppsummering

Klynger er veien å gå for å finne flere som hører sammen i samme slekt, men kan ikke brukes alene. Å sortere folk i grupper av slektninger er noe av det mest nyttige man kan gjøre for å skjønne sin slekt, og arv av segmenter på kromosonene.

Det er viktig å dokumentere underveis om du finne ut av en forbindelse. Bruk notatfeltet aktivt.

Det skal bare en person til for å finne ut av hvor en gruppe mennesker hører hjemme. Det aller viktigste man gjør er å skille hvem som tilhører farssiden eller morsiden av familien, dna-messig. (Her forventer jeg at test-selskapene finner gode måter å sortere hver eneste «bokstav» på vårt DNA for hver kromoson i fremtiden. Men dette krever høy grad av samtykke mellom slekt. At vårt dna er usortert mht far/mor er trolig årsaken til de fleste misforståelser)


Klynger er en del av det jeg kaller slektforskningens treenighet

xDNA – rekombinering


Denne artikkelen er en fortsettelse av «X – Kromosonet – Arv«. Nedenfor er en visuell fremstilling av arvemønsteret til X kromosonet, og hvordan denne kan rekombineres. Bruker en forenklet fremstilling over 3 generasjoner. Per og Anne får 2 barn: Ole og Frida

Ole arver ikke X fra sin far Per, men hans Y. Fra mor arver Ole en rekombinasjon av hennes (Anne’s) 2 X’er.

Frida arver også en rekombinert X fra sin mor Anne, denne er ikke lik hennes bror’s. Fra sin far Per får hun også en X. Siden han bare har en X kan denne ikke rekombineres. Den kommer dermed egentlig fra hans mor uforandret. dvs Frida’s farmor.

Carl og Mona har ett barn av hvert kjønn, Morten og Susanne.

Hva skjer når Susanne og Ole får 2 barn, Lars og Lotte?

 

X-GEN ABGH

X – Kromosonet – Arv


Din uforutsigbare femine arv. X kromosonet oppfører seg litt anderledes enn de andre kromosonene. Dette kan utnyttes om du vet hvordan du skal bruke det.

Alle har en «X» – fra sin mor

Når du ble skapt, gav din mor deg en X  (i sitt egg). Eggene hennes blir lagd samtidig som hun utvikles som foster. Egget hennes er like gammelt som henne selv.

Far’s sædcelle bestemmer derfor kjønnet?

  • Gir han en .. får man -> som er
    • X -> XX -> ♀ (hunn)
    • Y -> XY -> ♂ (hann)

Noen mener at dette ikke er en ubetinget regel at det egentlig er far som bestemmer dette. Teorien går ut på at siden hans sperm må bryte igjennom hennes cellevegg og det er ikke helt klart hva som gjør at så mange mislykkes, mens den ene klarer dette. Kan noe hos mor være med å velge den perfekte sædcellen? Hun tar ikke til takke med hva som helst?

Det fysiske faktum er at en far kan aldri gi en X til en sønn (han hadde da vært en hunn) og kan aldri gi en Y til en datter (hun hadde da vært en hann) Forøvrig dannes fars sædceller først i puberten.

Rekobminasjon – forenklet

Rekombinering skjer bare når kjønnsceller oppstår, og bare hvis man har 2 like kromsoner (en fra far og en fra mor). Det som skjer er at man blander sine foreldres DNA før det sendes videre til neste generasjon. Dette skjer for å sikre et tilfeldig mangfold.

2 like kromosomer legger seg over hverandre. Lengre biter av dna-spiralen bytter plass med hverandre. NB Noen ganger skjer det ikke rekombinasjon på dette kromosonet. Normalt skjer rekombinasjon ca 50 ganger fordelt på 22(23) kromosoner. Man har derfor normalt 0,1 eller 2 rekombinasjoner pr kromoson.

Man starter med 2 kromosoner gitt av far og mor. Avkom ender opp å få en av de 2 kryssende kromonene (til høyre).

Hver av disse kromosomene havner i hver sin kjønnscelle, så du sitter igjen med den ene av disse, den andre som du kunne arvet men ikke fikk gikk til din «onde» tvilling.

Mine XY (kjønnskromoson) regler

  1. Mor gir alle barn alltid en X
  2. Far gir Y til sønner
  3. Far gir X til døtre
  4. Sønn kan aldri få X fra far (avledet av 2)
  5. Datter kan aldri få Y (avledet av 2)
  6. Fedre kan gi sin mors X videre til døtre (1+3)
  7. X kan arves mellom forskjellig kjønn (1+3)
  8. X arves aldri. gjennom 2 mannsledd (2)
  9. X arves mellom kvinneledd (1)
  10. Fars X går uforandret videre (rekombinering krever 2 like kromosoner)
  11. Fars Y går uforandret videre til sønn (Finnes bare 1 Y, kan dermed ikke rekombineres)
  12. X rekombineres ikke hos hunkjønn noen ganger, selv om man har XX
  13. X kan splittes opp saktere gjennom generasjoner spesielt om den går igjennom mannsledd. Derfor kan X inneholde identifiserbar DNA flere generasjoner lengre bak enn du er vant til ved vanlig sjekk av kromosomer
  14. Farfars X går aldri videre.
  15. Morfars X går videre til hans datter («din» mor)
  16. X dna kan brukes til å finne ut om halvsøstre har samme far, eller ikke. De vil alltid ha 100% match på x-dna, om de har samme far. Har de bare samme mor vil trolig ha rekombinert, dvs de deler ikke hele kromsonet. (NB! les pkt 12 pånytt)
  17. Helsøstre vil alltid ha 100% match på X. (pkt 10)
  18. Brødre med samme mor vil normalt alltid har forskjellig X fra henne.

Arvemønsteret til X kromosonet

Om noen matcher mine foreldre på x kromosonet. Hvordan løser vi dette? Ett praktisk eksempel fra min familie. Faktisk, kan vi bruke eliminasjonsmetoden, arvemønsteret må følge reglene ovenfor. Det bare noen få i deres anerekke som kan ha gitt dette videre. Nedenfor er er disse fargelagt. menn er blå, damer er røde

X-DNA arv (Mann)

Siden X ikke går gjennom 2 mannsledd forsvinner følgende: Ingen av min fars fars linje passer. Vekk med halve anetreet med engang. Hele hans farslinje (Rolf Holte) tas bort. Vekk med hans morfars fars linje (Emil Kristoffersen), og mormors fars fars linje (Andreas Pederson). Disse bidrar ikke: (oppsummert)

  • Far – Rolf Holte
  • Morfar’s far – Emil Kristoffersen
  • Mormor’s farfar – Andreas Pederson (Pärsson)

X-DNA arv (Kvinne)

Samme logikk som over for min mor, men hennes far er lik min far (en generasjon forskjøvet). Hennes mor er bare en gjentakelse av henne forskjøvet ett ledd. Følgende personer kan ikke ha bidratt, (og alle i anerekken over faller bort):

  • Farfar – Kasper Grøndalen
  • Morfarsfar (oldefar) – Paul Chr. Christoffersen
  • Mormors farfar (Tipoldefar) – Lars Jørgens Holst

Svigermors forbannelse/ hevn?

(Sviger)mødre bestemmer hvordan xDNA oppstår og arves. Dette vil sterkt påvirke avkom. Menn påvirker ikke X kromosomet under kjønnsdeling

Far’s X – eksakt kopi av den han fikk fra sin mor (ergo farmor lagde den) Mor’s X – Rekombinasjon av sin egen mor og hennes farmor

Døtre lager sine egg i mors liv, dermed kan man kanskje si at svigermor har forutbestemt hvilke egg dattera skal ha? (Mannens svigermor)

Som nevnt tidligere menn påvirker ikke xDNA. Kan man derfor si at dette er den ultimate hevnen fra kona’s svigermor, når hun bestemmer så mye over dette arvestoffet?

Hvorfor DNA teste de eldste?


Om man skal slektsforske med autosomalt DNA (atDNA) er det viktig å starte med de eldste i den grenen du jakter opplysninger på.

Alle har 2 autosomale kromosoner i par, den ene kommer fra far, og det andre fra mor, ergo arver man 50% av sine foreldrenes atDNA. Dermed forsvinner 50% av deres arvestoff også. Dine søsken arver en annen miks av dine foreldres DNA enn du, så dette betyr ikke at 50% går tapt for generasjonene etterpå, men at dine barn ikke kan arve segementer fra sine besteforeldre enn du selv har arvet i utgangspunktet. (Unntak: Du får barn med nær slektning som også er nær slektning av en eller begge av dine foreldre/ besteforeldre etc).

Den observante leser kan fra ovenstående se at alle mennesker har dna i utgangspunktet som er identifiserbart til 2 generasjoner mer enn seg selv. Desverre kan folk ikke se i sine testresultater hva som kom fra hvilken forelder. Men andre slektninger kan på hver sin familie side kan hjelpe til med å sortere ut dette. En helsøsken kan ikke isolert hjelpe til fordi de har dna fra begge foreldrene.

Hele søsken er nyttige å teste fordi om man har 2 andre hele søsken kan man rekronstruere nært opp til 100% av begge foreldrenes dna, uten å fysisk teste disse. Triangulering og andre slektninger gir deg en oversikt over hva alle besteforeldre dine gav dere, Man ikke arver eksakt 25% av hver av sine besteforeldrene, men totalen alltid være en 50% miks fra dine foreldres foreldre (50% av 50% = 25%)

Det er arvet DNA fra en felles stamfar/mor som gjør at du kan finne levende slektninger. Jo nærmere i slekt du er, jo mer delt DNA kan du finne. Etterkommere nedover mister DNA på veien. Derfor er det viktig å høste inn DNA fra de som er lengst opp i ditt anetre.

Det kan finnes andre strategier som tilsier at andre skal testes, men hovedregel blir alltid, høst DNA fra de «eldste» dva lengst opp i treet, før de forsvinner. De bærer med seg mer av din familie i seg enn du. Jo lengre du kommer opp i slekstreet jo lengre tilbake kan du derfor se. For hver generasjon du kan gå opp, jo lengre opp kan DNA rekke. En atDNA kan typisk se 5-7 generasjoner bakover. Med 3-4 generasjoner pr 100 år, vil dette gi et tilbake blikk i historien på mellom 200-240 år.

Lever din besteforeldre, test de. Har de også levende søsken, test gjerne de også. Detter er viktig fordi de har andre biter av din DNA forhistorie. Håper dette klarlegger hvorfor vi tester de «eldste». NB det er teknisk mulig å hente ut DNA fra konvolutter som dine forfedre har slikket på frimerke, eller den delen som lukker brevet, hårbørster kan ha hårstrå med røtter. Det er dyrere å hente DNA, men fullt mulig. På brev kan det være DNA fra andre enn den som har skrevet brevet, men ikke ofte. Feilkilden er ihvertfall større enn om du har en som tar testen i ditt åsyn.

Visuell fasing – DNA Painter


Med DNA Painter kan man visuelt tegne opp dine DNA treff. Disse kan senere hjelpe deg å bestemme hvor andre hører hjemme dersom disse ikke har ett slektstre å vise til.

Dette trenger du:

  • DNA treff som du vet hvor denne hører hjemme i ditt slektstre.
  • Liste over kromosomer som dere har felles (delte segmenter)
  • Konto hos DNA Painter (en profil er gratis) $30 for 6 mnd og $55 for 12 mnd.

Har man funnet ut av ett treff kan dette hjelpe deg videre med andre treff. Alle andre som passer i mellom*) vil enten være i slekt via samme anepar, eller lengre opp i ane rekka.

*) De fleste snubler her – Gitt at de matcher på samme segment (og ikke det samme område som motsatt foreldre har gitt deg).

Det finnes måter å finne ut av dette på, kalles triangulering. Om ABC matcher på samme segment, må de match hverandre innburdes også. A->B, A->C og B->C om ikke siste er tilfelle. Betyr dette: Siden du (A) har ett kromosonpar så kan B Match din morsside og C din farsside. Derfor vil ikke B og C matche hverandre. Hos ftDNA bruker man Matrix, MyHeritage har merker trangulerte på Kromosonleseren. Gedmatch har også verktøy for triangulering.

Overlappende segmenter kan bety at man har arvet disse fra felles forfedre. Alle andre som havner under dette delte segmentet kan derfor være i slekt med deg. Forutsatt at det er på samme segmentparet. (Som nevent overor har man alltid 2 ett kromoson fra fra og ett fra mor). år du ser på leverandørenes kromosonleserer må du være klar over at den bruker begge dine sider mot andre. Du kan ha segment treff som er overoptemistiske, hvor du har treff mot begge sider.

Pratisk eksempel

Først av alt, jeg har ikke DNA etter mine besteforeldre, men begge mine foreldre. Jeg kan enkelt fase miitt DNA i min mors bidrag og fars bidrag. (Enkelt eksempel på fasing). Utfordingen mange har er at de ikke har en forelder som er testet. Hvordan skal man da fase DNA’et. Dette et eksempel

Most Common Recent Ancestor

Siden jeg vet at dette treffet går via min mors mors linje kan jeg derfor fase de delte segmentene mellom min mor f. Grøndahl og herr Svendsen. Digresejon dette er det næremste treffet hun har utenom meg og hennes barnebarn. Denne personen er heller ikke på Gedmatch, eller ftDNA. Om jeg ikke hadde overført mine rådata til MyHeritage ville jeg trolig aldri funnet at han hadde tatt en DNA test.


Man laster ned delt segementer via kromosonleseren (øverst til høyre)

Fra før har en en tom profil opprettet for min mor. For å «male» dette treffet inn velger jeg å importere fila jeg lastet ned i bildet ovenfor.

  • Åpner nedlastet fil i notisblokk (eller excel), kopierer innhold
  • Åpne profil i DNA painter
  • Klikker på «Paint new match»
  • Lim inn innhold fra nedlastet fil
  • Klikk «Save match now»

Redigerer kjent ane. Bruker Prefiks MMF for Mor Mor’s Foreldre. Setter slektside (Maternal), og en lite notat hvor informasjonen kom fra

Jeg kunne ha valgt en annen fremgangsmåte. Import data direkte fra fil dette krever betalt medlemskap (noe som jeg har)

En annen gang skal jeg vise hvordan dette vil se ut med flere delte segementer og hva man kan lese ut av dette